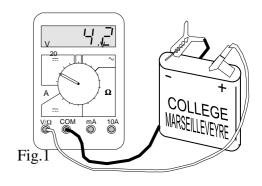

TENSIONS ALTERNATIVES


Objectifs: Construire la représentation graphique de l'évolution d'une tension variable. Mesurer la période, la fréquence et la valeur maximale d'une tension.

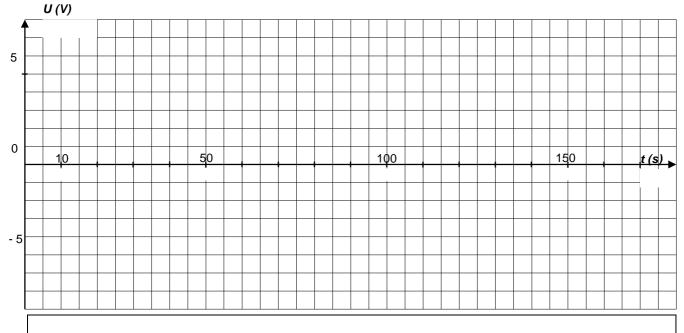
1 DEUX TYPES DE TENSIONS

1.1 TENSION CONTINUE

On mesure la tension aux bornes d'une pile. L'écran du voltmètre indique toujours la même valeur. Représenter la tension mesurée ci-contre en fonction du temps ()

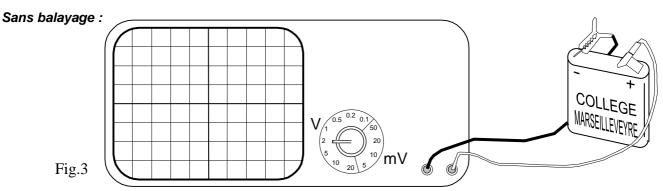
Générateur Très

Fréquence

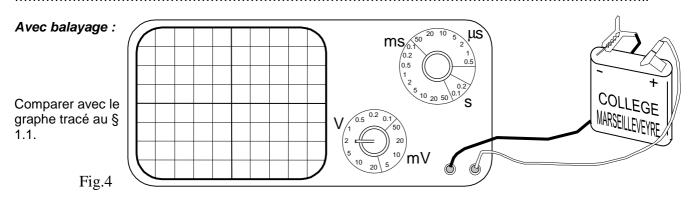

Basse

1.2 TENSION ALTERNATIVE

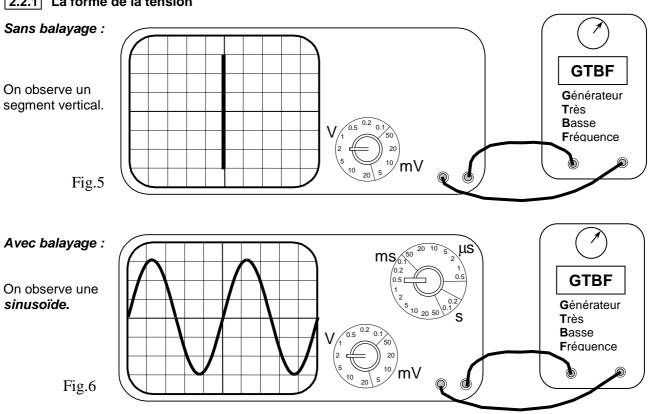
On mesure la tension aux bornes d'un générateur très basse fréquence. L'indication du voltmètre varie.


Relever les valeurs de cette tension toutes les 10 s et les porter dans le tableau :

t (s)	0	10	20	30	40	50	60		1		Ö		
U (V)								Fig.2					
	70	80	90	100	110	120	130	140	150	160	170	180	


2 VISUALISATION A L'OSCILLOSCOPE (voir animation flash n°1 sur http://physiquecolleg e.free.fr/troisieme.htm)

2.1 TENSION CONTINUE


Le sélecteur représenté sur la façade de l'oscilloscope indique que chaque division verticale de l'écran correspond à 2 V. Représenter le spot sur cet écran pour la tension de la pile du § 1.1. (4,2 V) Que ce passe-t-il lorsqu'on inverse les fils de connexion ?

.....

2.2 TENSION ALTERNATIVE

2.2.1 La forme de la tension

2.2.2 La période

C'est la durée du « motif élémentaire » (qui se répète identique à lui même)

Sur le schéma de la figure 6, on note que le sélecteur du haut indique que chaque division horizontale correspond à 0,5 ms.

Quelle est la durée du « motif » qui se répète : on note $T = \dots$s. C'est la **période** de cette tension.

2.2.3. La fréquence

Elle se mesure en hertz (Hz)

C'est le nombre de périodes mesuré en *une* seconde. C'est donc l'inverse de la période :

$$f = \frac{1}{T}$$
, avec f en hertz (Hz)
 T en secondes (s)

Calculer la fréquence correspondant à la période mesurée (fig.6): f =

2.2.4. Valeur maximale de la tension

Le sommet de l'oscillogramme (fig.6), se trouve à 3 divisions environ. Le sélecteur du bas indique que chaque division verticale correspond à 2V. Cette tension, appelée *tension maximale U*_{max} vaut donc :

$$U_{\text{max}} = \dots$$

La tension oscille donc entre 2 valeurs : $+ U_{max}$ et $- U_{max}$

2.2.5. Valeur efficace de la tension

Le GTBF, réglé comme à la figure 6, mais branché à un voltmètre (placé sur alternatif) n'indique pas la valeur maximale de la tension mais la *valeur efficace*. C'est la valeur de la *tension continue* qui produirait le même effet (si on décidait par exemple, d'allumer une ampoule avec).

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

Dans le cas des réglages de la figure 6, le voltmètre placé en position alternative indiquerait :

3 ET L'INTENSITE?

En continu : comment se comportent les diodes électroluminescentes dans ce montage ?	En alternatif : comment se comportent les DEL dans ce montage ?
COLLEGE Marseilleveyre	GTBF
Conclure:	